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D-Algebraic Functions
This worksheet accompagnies the paper "D-Algebraic Functions" by Rida Ait El 
Manssour, Anna-Laura Sattelberger, and Bertrand Teguia Tabuguia. Our Maple package
NLDE uses the Maple packages 

- PolynomialIdeals
- Groebner

for elimination with Gröbner bases. The source file for this version of the package can be
found here, and the up-to-date version is available here. Those interested in trying the 
computations of this file in a Jupyter notebook should download the notebook attached 
to the MathRepo webpage at https://mathrepo.mis.mpg.de/DAlgebraicFunctions

In order to be able to use NLDE, one can just put the file NLDE.mla in the same 
directory with the notebook or the Maple worksheet.

We start by setting the (current) working directory as a directory for libraries.

libname:=currentdir(),libname:

Then we load the NLDE package. This worksheet is concerns with 4 procedures. 

with(NLDE,SysToMinDiffPoly,arithmeticDalg,composeDalg,unaryDalg)

 Example 2.3

From the linear ODE of  one derives an ADE satisfied by its reciprocal using 
unaryDalg as below.

The equation for can be computed using DEtools:-FindODE.

ODE:=DEtools:-FindODE(sin(x),y(x))

Syntax of unaryDalg: unaryDalg(ADEin,y(x),z=r(x,y)), 
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where ADEin is an algebraic differential equation (so contains "="), y(x) is its dependent
variable, and x is its independent variable. z is the name of dependent variable for the 
output (like y for y(x)), and r is a rational expression in x and y. The output is an ADE 
satisfies by all r(x,f(x)), where f(x) satisfies the ADEin.

Hence the ADE for the reciprocal 

unaryDalg(ODE=0,y(x),z=1/y)
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Example 2.9

We now consider the Painlevé transcendent of type I that fullfils the ADE:

All squares of solutions to that ADE satisfy the following ADE

unaryDalg(diff(y(x),x,x)=6*y(x)^2+x,y(x),z=y^2)
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Example 4.4

Syntax of composeDalg:  composeDalg([ADE1,ADE2],[y(x),z(x)],w(x)), 

where ADE1 and ADE2 are two algebraic differential equations of the dependent 
variable y(x) and z(x), resp. w(x) is the dependent variable for the output. The latter is 
an ADE satisfies by all f(g(x)) where f(x) satisfies ADE1, and g(x) satisfies ADE2.

ADE1:=diff(y(x),x)-y(x)=0

K

ADE2:=z(x)^2+2*diff(z(x),x)=0

composeDalg([ADE1,ADE2],[y(x),z(x)],w(x))
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Example 4.5

ADE1:=diff(y(x),x,x)+y(x)=0

ADE2:=diff(z(x),x)-x*z(x)=0

K

composeDalg([ADE1,ADE2],[y(x),z(x)],w(x))
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Example 5.1

Syntax of arithmeticDalg:  arithmeticDalg([ADE1,...,ADEn],[y1(x),...,yn(x)],w=r(x,y1,.
..,yn)), 

to be understood as for unaryDalg, but here we can deal with n-ary (n operands) 
operations with D-algebraic functions.

ADE1:=diff(y(x),x)^3+y(x)+1=0

ADE2:=diff(z(x),x)^2-z(x)-1=0

K K

arithmeticDalg([ADE1,ADE2],[y(x),z(x)],w=y+z)
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Remark 5.2 and Remark 5.3
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ADE1:=diff(y(x),x,x)*y(x)-diff(y(x),x)^2=0

K

ADE2:=diff(z(x),x)^2+z(x)^2+1=0

arithmeticDalg([ADE1,ADE2],[y(x),z(x)],w=y+z)
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One can verify that  is not a solution of the previous output ADE, where  is a 
solution of ADE1, eg: , and , the imaginary number, is a constant 
solution of ADE2.
This special case can be treated separately as shown below.

unaryDalg(ADE1,y(x),w=y+I)
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An algebraic equation is seen as a zeroth-order differential equation.

arithmeticDalg([ADE1,z(x)^2+1=0],[y(x),z(x)],w=y+z)
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Example 5.4 (Elliptic functions)

We invite the reader to try the computations to see the outputs. Some outputs are quite big.

K K

K K

K K

K K
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We use our algorithm to find the ADE satisfied by kappa

We rearrange it for identification of the coefficients.

:

:
:
:

:
:

K K K

The expected equation and its coefficients

K K K K

We solve the system

:
:
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Verification (recovering the equation from the expressions of g2 and g3)
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Example 5.5 (SIR model)

Syntax of  SystoMinDiffPoly:  SystoMinDiffPoly([dy1,...,dyn],r(x,y1,...yn),[y1,...yn],w
(x)),

where dy1,...,dyn, are the derivatives of y1,...yn, in terms of y1,...,yn, given rationally. x 
is the independent variable, and w is the name of the dependent variable for the output 
differential equation. This is also called input-output equation.

timing,p:=CodeTools:-CPUTime(SysToMinDiffPoly([-beta*S*T-delta*S 
+ mu, beta*S*
T - gamma*T + nu, delta*S+gamma*T],R,[S,T,R],w(t)))
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PDEtools:-difforder(p,t)
3

Bonus material: checking the validity of the outputs

Composition, addition, multiplication, division, exponentiation.

We here demonstrate how one can verify the correctness of the outputs when the 
solutions of the input ADEs can be found. Given two algebraic differential equations 
ADE1 and ADE2, such that  fulfils ADE1 and  fulfills ADE2, the output ADE is 
valid if it vanishes at , where  (e.g.: /, +)  is the operation used 
to compute the output ADE.

ADE1:=(1 + x)*diff(y(x), x)=1 

We solve ADEs using Maple's dsolve command.

dsolve(ADE1,y(x))

ADE2:=-z(x)^2 - 2*diff(z(x), x)^2 + diff(z(x), x, x)*z(x) = 0

K K

dsolve(ADE2,z(x))
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We will verify our result with  from the solutions of ADE2 and  from

those of ADE1

ADE3:=composeDalg([ADE1,ADE2],[y(x),z(x)],w(x))
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simplify(eval(ADE3,w(x)=log(1+1/sin(x))))

ADE4:=arithmeticDalg([ADE1,ADE2],[y(x),z(x)],w=y+z)
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simplify(eval(ADE4,w(x)=1/sin(x)+log(1+x)))

ADE5:=arithmeticDalg([ADE1,ADE2],[y(x),z(x)],w=y*z)
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simplify(eval(ADE5,w(x)=1/sin(x)*log(1+x)))

ADE6:=arithmeticDalg([ADE1,ADE2],[y(x),z(x)],w=y/z)
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simplify(eval(ADE6,w(x)=sin(x)*log(1+x)))

ADE7:=unaryDalg(ADE1,y(x),w=(y+1)^3)

K

simplify(eval(ADE7,w(x)=(log(1+x)^3)))

Conclusion

The package is useful for practical computations with D-algebraic functions, i.e., 
solutions to algebraic differential equations. However, we point out that sometimes the 
running time can be very high due to elimination computations happening internally.


